1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
| | /* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright Red Hat
* Author: David Gibson <david@gibson.dropbear.id.au>
*
* Tracking for logical "flows" of packets.
*/
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include "util.h"
#include "ip.h"
#include "passt.h"
#include "siphash.h"
#include "inany.h"
#include "flow.h"
#include "flow_table.h"
const char *flow_state_str[] = {
[FLOW_STATE_FREE] = "FREE",
[FLOW_STATE_NEW] = "NEW",
[FLOW_STATE_INI] = "INI",
[FLOW_STATE_TGT] = "TGT",
[FLOW_STATE_TYPED] = "TYPED",
[FLOW_STATE_ACTIVE] = "ACTIVE",
};
static_assert(ARRAY_SIZE(flow_state_str) == FLOW_NUM_STATES,
"flow_state_str[] doesn't match enum flow_state");
const char *flow_type_str[] = {
[FLOW_TYPE_NONE] = "<none>",
[FLOW_TCP] = "TCP connection",
[FLOW_TCP_SPLICE] = "TCP connection (spliced)",
[FLOW_PING4] = "ICMP ping sequence",
[FLOW_PING6] = "ICMPv6 ping sequence",
};
static_assert(ARRAY_SIZE(flow_type_str) == FLOW_NUM_TYPES,
"flow_type_str[] doesn't match enum flow_type");
const uint8_t flow_proto[] = {
[FLOW_TCP] = IPPROTO_TCP,
[FLOW_TCP_SPLICE] = IPPROTO_TCP,
[FLOW_PING4] = IPPROTO_ICMP,
[FLOW_PING6] = IPPROTO_ICMPV6,
};
static_assert(ARRAY_SIZE(flow_proto) == FLOW_NUM_TYPES,
"flow_proto[] doesn't match enum flow_type");
/* Global Flow Table */
/**
* DOC: Theory of Operation - allocating and freeing flow entries
*
* Flows are entries in flowtab[]. We need to routinely scan the whole table to
* perform deferred bookkeeping tasks on active entries, and sparse empty slots
* waste time and worsen data locality. But, keeping the table fully compact by
* moving entries on deletion is fiddly: it requires updating hash tables, and
* the epoll references to flows. Instead, we implement the compromise described
* below.
*
* Free clusters
* A "free cluster" is a contiguous set of unused (FLOW_TYPE_NONE) entries in
* flowtab[]. The first entry in each cluster contains metadata ('free'
* field in union flow), specifically the number of entries in the cluster
* (free.n), and the index of the next free cluster (free.next). The entries
* in the cluster other than the first should have n == next == 0.
*
* Free cluster list
* flow_first_free gives the index of the first (lowest index) free cluster.
* Each free cluster has the index of the next free cluster, or MAX_FLOW if
* it is the last free cluster. Together these form a linked list of free
* clusters, in strictly increasing order of index.
*
* Allocating
* We always allocate a new flow into the lowest available index, i.e. the
* first entry of the first free cluster, that is, at index flow_first_free.
* We update flow_first_free and the free cluster to maintain the invariants
* above (so the free cluster list is still in strictly increasing order).
*
* Freeing
* It's not possible to maintain the invariants above if we allow freeing of
* any entry at any time. So we only allow freeing in two cases.
*
* 1) flow_alloc_cancel() will free the most recent allocation. We can
* maintain the invariants because we know that allocation was made in the
* lowest available slot, and so will become the lowest index free slot again
* after cancellation.
*
* 2) Flows can be freed by returning true from the flow type specific
* deferred or timer function. These are called from flow_defer_handler()
* which is already scanning the whole table in index order. We can use that
* to rebuild the free cluster list correctly, either merging them into
* existing free clusters or creating new free clusters in the list for them.
*
* Scanning the table
* Theoretically, scanning the table requires FLOW_MAX iterations. However,
* when we encounter the start of a free cluster, we can immediately skip
* past it, meaning that in practice we only need (number of active
* connections) + (number of free clusters) iterations.
*/
unsigned flow_first_free;
union flow flowtab[FLOW_MAX];
static const union flow *flow_new_entry; /* = NULL */
/* Last time the flow timers ran */
static struct timespec flow_timer_run;
/** flowside_from_af() - Initialise flowside from addresses
* @fside: flowside to initialise
* @af: Address family (AF_INET or AF_INET6)
* @eaddr: Endpoint address (pointer to in_addr or in6_addr)
* @eport: Endpoint port
* @faddr: Forwarding address (pointer to in_addr or in6_addr)
* @fport: Forwarding port
*/
static void flowside_from_af(struct flowside *fside, sa_family_t af,
const void *eaddr, in_port_t eport,
const void *faddr, in_port_t fport)
{
if (faddr)
inany_from_af(&fside->faddr, af, faddr);
else
fside->faddr = inany_any6;
fside->fport = fport;
if (eaddr)
inany_from_af(&fside->eaddr, af, eaddr);
else
fside->eaddr = inany_any6;
fside->eport = eport;
}
/** flow_log_ - Log flow-related message
* @f: flow the message is related to
* @pri: Log priority
* @fmt: Format string
* @...: printf-arguments
*/
void flow_log_(const struct flow_common *f, int pri, const char *fmt, ...)
{
const char *type_or_state;
char msg[BUFSIZ];
va_list args;
va_start(args, fmt);
(void)vsnprintf(msg, sizeof(msg), fmt, args);
va_end(args);
/* Show type if it's set, otherwise the state */
if (f->state < FLOW_STATE_TYPED)
type_or_state = FLOW_STATE(f);
else
type_or_state = FLOW_TYPE(f);
logmsg(pri, "Flow %u (%s): %s", flow_idx(f), type_or_state, msg);
}
/**
* flow_set_state() - Change flow's state
* @f: Flow changing state
* @state: New state
*/
static void flow_set_state(struct flow_common *f, enum flow_state state)
{
char estr[INANY_ADDRSTRLEN], fstr[INANY_ADDRSTRLEN];
const struct flowside *ini = &f->side[INISIDE];
uint8_t oldstate = f->state;
ASSERT(state < FLOW_NUM_STATES);
ASSERT(oldstate < FLOW_NUM_STATES);
f->state = state;
flow_log_(f, LOG_DEBUG, "%s -> %s", flow_state_str[oldstate],
FLOW_STATE(f));
if (MAX(state, oldstate) >= FLOW_STATE_TGT)
flow_log_(f, LOG_DEBUG, "%s [%s]:%hu -> [%s]:%hu => %s",
pif_name(f->pif[INISIDE]),
inany_ntop(&ini->eaddr, estr, sizeof(estr)),
ini->eport,
inany_ntop(&ini->faddr, fstr, sizeof(fstr)),
ini->fport,
pif_name(f->pif[TGTSIDE]));
else if (MAX(state, oldstate) >= FLOW_STATE_INI)
flow_log_(f, LOG_DEBUG, "%s [%s]:%hu -> [%s]:%hu => ?",
pif_name(f->pif[INISIDE]),
inany_ntop(&ini->eaddr, estr, sizeof(estr)),
ini->eport,
inany_ntop(&ini->faddr, fstr, sizeof(fstr)),
ini->fport);
}
/**
* flow_initiate_() - Move flow to INI, setting pif[INISIDE]
* @flow: Flow to change state
* @pif: pif of the initiating side
*/
static void flow_initiate_(union flow *flow, uint8_t pif)
{
struct flow_common *f = &flow->f;
ASSERT(pif != PIF_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_NEW);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] == PIF_NONE && f->pif[TGTSIDE] == PIF_NONE);
f->pif[INISIDE] = pif;
flow_set_state(f, FLOW_STATE_INI);
}
/**
* flow_initiate_af() - Move flow to INI, setting INISIDE details
* @flow: Flow to change state
* @pif: pif of the initiating side
* @af: Address family of @eaddr and @faddr
* @saddr: Source address (pointer to in_addr or in6_addr)
* @sport: Endpoint port
* @daddr: Destination address (pointer to in_addr or in6_addr)
* @dport: Destination port
*
* Return: pointer to the initiating flowside information
*/
const struct flowside *flow_initiate_af(union flow *flow, uint8_t pif,
sa_family_t af,
const void *saddr, in_port_t sport,
const void *daddr, in_port_t dport)
{
struct flowside *ini = &flow->f.side[INISIDE];
flowside_from_af(ini, af, saddr, sport, daddr, dport);
flow_initiate_(flow, pif);
return ini;
}
/**
* flow_initiate_sa() - Move flow to INI, setting INISIDE details
* @flow: Flow to change state
* @pif: pif of the initiating side
* @ssa: Source socket address
* @dport: Destination port
*
* Return: pointer to the initiating flowside information
*/
const struct flowside *flow_initiate_sa(union flow *flow, uint8_t pif,
const union sockaddr_inany *ssa,
in_port_t dport)
{
struct flowside *ini = &flow->f.side[INISIDE];
inany_from_sockaddr(&ini->eaddr, &ini->eport, ssa);
if (inany_v4(&ini->eaddr))
ini->faddr = inany_any4;
else
ini->faddr = inany_any6;
ini->fport = dport;
flow_initiate_(flow, pif);
return ini;
}
/**
* flow_target() - Move flow to TGT, setting TGTSIDE details
* @flow: Flow to change state
* @pif: pif of the target side
*/
void flow_target(union flow *flow, uint8_t pif)
{
struct flow_common *f = &flow->f;
ASSERT(pif != PIF_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_INI);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] == PIF_NONE);
f->pif[TGTSIDE] = pif;
flow_set_state(f, FLOW_STATE_TGT);
}
/**
* flow_set_type() - Set type and move to TYPED
* @flow: Flow to change state
* @pif: pif of the initiating side
*/
union flow *flow_set_type(union flow *flow, enum flow_type type)
{
struct flow_common *f = &flow->f;
ASSERT(type != FLOW_TYPE_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_TGT);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] != PIF_NONE);
f->type = type;
flow_set_state(f, FLOW_STATE_TYPED);
return flow;
}
/**
* flow_activate() - Move flow to ACTIVE
* @f: Flow to change state
*/
void flow_activate(struct flow_common *f)
{
ASSERT(&flow_new_entry->f == f && f->state == FLOW_STATE_TYPED);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] != PIF_NONE);
flow_set_state(f, FLOW_STATE_ACTIVE);
flow_new_entry = NULL;
}
/**
* flow_alloc() - Allocate a new flow
*
* Return: pointer to an unused flow entry, or NULL if the table is full
*/
union flow *flow_alloc(void)
{
union flow *flow = &flowtab[flow_first_free];
ASSERT(!flow_new_entry);
if (flow_first_free >= FLOW_MAX)
return NULL;
ASSERT(flow->f.state == FLOW_STATE_FREE);
ASSERT(flow->f.type == FLOW_TYPE_NONE);
ASSERT(flow->free.n >= 1);
ASSERT(flow_first_free + flow->free.n <= FLOW_MAX);
if (flow->free.n > 1) {
union flow *next;
/* Use one entry from the cluster */
ASSERT(flow_first_free <= FLOW_MAX - 2);
next = &flowtab[++flow_first_free];
ASSERT(FLOW_IDX(next) < FLOW_MAX);
ASSERT(next->f.type == FLOW_TYPE_NONE);
ASSERT(next->free.n == 0);
next->free.n = flow->free.n - 1;
next->free.next = flow->free.next;
} else {
/* Use the entire cluster */
flow_first_free = flow->free.next;
}
flow_new_entry = flow;
memset(flow, 0, sizeof(*flow));
flow_set_state(&flow->f, FLOW_STATE_NEW);
return flow;
}
/**
* flow_alloc_cancel() - Free a newly allocated flow
* @flow: Flow to deallocate
*
* @flow must be the last flow allocated by flow_alloc()
*/
void flow_alloc_cancel(union flow *flow)
{
ASSERT(flow_new_entry == flow);
ASSERT(flow->f.state == FLOW_STATE_NEW ||
flow->f.state == FLOW_STATE_INI ||
flow->f.state == FLOW_STATE_TGT ||
flow->f.state == FLOW_STATE_TYPED);
ASSERT(flow_first_free > FLOW_IDX(flow));
flow_set_state(&flow->f, FLOW_STATE_FREE);
memset(flow, 0, sizeof(*flow));
/* Put it back in a length 1 free cluster, don't attempt to fully
* reverse flow_alloc()s steps. This will get folded together the next
* time flow_defer_handler runs anyway() */
flow->free.n = 1;
flow->free.next = flow_first_free;
flow_first_free = FLOW_IDX(flow);
flow_new_entry = NULL;
}
/**
* flow_defer_handler() - Handler for per-flow deferred and timed tasks
* @c: Execution context
* @now: Current timestamp
*/
void flow_defer_handler(const struct ctx *c, const struct timespec *now)
{
struct flow_free_cluster *free_head = NULL;
unsigned *last_next = &flow_first_free;
bool timer = false;
unsigned idx;
if (timespec_diff_ms(now, &flow_timer_run) >= FLOW_TIMER_INTERVAL) {
timer = true;
flow_timer_run = *now;
}
ASSERT(!flow_new_entry); /* Incomplete flow at end of cycle */
for (idx = 0; idx < FLOW_MAX; idx++) {
union flow *flow = &flowtab[idx];
bool closed = false;
switch (flow->f.state) {
case FLOW_STATE_FREE: {
unsigned skip = flow->free.n;
/* First entry of a free cluster must have n >= 1 */
ASSERT(skip);
if (free_head) {
/* Merge into preceding free cluster */
free_head->n += flow->free.n;
flow->free.n = flow->free.next = 0;
} else {
/* New free cluster, add to chain */
free_head = &flow->free;
*last_next = idx;
last_next = &free_head->next;
}
/* Skip remaining empty entries */
idx += skip - 1;
continue;
}
case FLOW_STATE_NEW:
case FLOW_STATE_INI:
case FLOW_STATE_TGT:
case FLOW_STATE_TYPED:
/* Incomplete flow at end of cycle */
ASSERT(false);
break;
case FLOW_STATE_ACTIVE:
/* Nothing to do */
break;
default:
ASSERT(false);
}
switch (flow->f.type) {
case FLOW_TYPE_NONE:
ASSERT(false);
break;
case FLOW_TCP:
closed = tcp_flow_defer(&flow->tcp);
break;
case FLOW_TCP_SPLICE:
closed = tcp_splice_flow_defer(&flow->tcp_splice);
if (!closed && timer)
tcp_splice_timer(c, &flow->tcp_splice);
break;
case FLOW_PING4:
case FLOW_PING6:
if (timer)
closed = icmp_ping_timer(c, &flow->ping, now);
break;
default:
/* Assume other flow types don't need any handling */
;
}
if (closed) {
flow_set_state(&flow->f, FLOW_STATE_FREE);
memset(flow, 0, sizeof(*flow));
if (free_head) {
/* Add slot to current free cluster */
ASSERT(idx == FLOW_IDX(free_head) + free_head->n);
free_head->n++;
flow->free.n = flow->free.next = 0;
} else {
/* Create new free cluster */
free_head = &flow->free;
free_head->n = 1;
*last_next = idx;
last_next = &free_head->next;
}
} else {
free_head = NULL;
}
}
*last_next = FLOW_MAX;
}
/**
* flow_init() - Initialise flow related data structures
*/
void flow_init(void)
{
/* Initial state is a single free cluster containing the whole table */
flowtab[0].free.n = FLOW_MAX;
flowtab[0].free.next = FLOW_MAX;
}
|